Delays in Admittance-Controlled Haptic Devices Make Simulated Masses Feel Heavier
نویسندگان
چکیده
In an admittance-controlled haptic device, input forces are used to calculate the movement of the device. Although developers try to minimize delays, there will always be delays between the applied force and the corresponding movement in such systems, which might affect what the user of the device perceives. In this experiment we tested whether these delays in a haptic human-robot interaction influence the perception of mass. In the experiment an admittance-controlled manipulator was used to simulate various masses. In a staircase design subjects had to decide which of two virtual masses was heavier after gently pushing them leftward with the right hand in mid-air (no friction, no gravity). The manipulator responded as quickly as possible or with an additional delay (25 or 50 ms) to the forces exerted by the subject on the handle of the haptic device. The perceived mass was ~10% larger for a delay of 25 ms and ~20% larger for a delay of 50 ms. Based on these results, we estimated that the delays that are present in nowadays admittance-controlled haptic devices (up to 20ms) will give an increase in perceived mass which is smaller than the Weber fraction for mass (~10% for inertial mass). Additional analyses showed that the subjects' decision on mass when the perceptual differences were small did not correlate with intuitive variables such as force, velocity or a combination of these, nor with any other measured variable, suggesting that subjects did not have a consistent strategy during guessing or used other sources of information, for example the efference copy of their pushes.
منابع مشابه
Simulation of the Admittance Control Based Haptic Interface Device
The purpose of this paper is to demonstrate the simulation of the haptic interface device utilizing the admittance control method for the applications of human/virtual environment interaction. . The dynamics of the haptic interface is derived, and then it is integrated with the admittance interaction loop. In doing so, firstly, the haptic device is simulated and the design of it is done through...
متن کاملDisturbance Observer Based Closed Loop Force Control for Haptic Feedback
Most commonly used impedance-type haptic interfaces employ open-loop force control under the assumption of pseudostatic interactions. Advanced force control in such interfaces can increase simulation fidelity through improvement of the transparency of the device, and can further improve robustness. However, closed loop force-feedback is limited both due to the bandwidth limitations of force sen...
متن کاملAn Admittance Glove Mechanism for Controlling a Mobile Robot
* Address all correspondence to this author. ABSTRACT This paper presents a bidirectional teleoperation admittance haptic glove (RML glove) which can be used to control mobile robots. The glove receives information from the environment and the internal status of the mobile robot, and generates a force feedback to the operator through the wireless module which in return communicates command sign...
متن کاملA force-controlled planar haptic device for movement control analysis of the human arm.
This paper describes the design and application of a haptic device to study the mechanical properties of the human arm during interaction with compliant environments. Estimates of the human endpoint admittance can be obtained by recording position deviations as a result of force perturbations. Previous studies attempted to estimate the impedance by recording force as a result of position pertur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015